45th Polish Mathematical Olympiad Problems 1994
A1. Find all triples (x,y,z) of positive rationals such that x + y + z, 1/x + 1/y + 1/z and xyz are all integers.
A3. k is a fixed positive integer. Let an be the number of maps f from the subsets of {1, 2, ... , n} to {1, 2, ... , k} such that for all subsets A, B of {1, 2, ... , n} we have f(A ∩ B) = min(f(A), f(B)). Find limn→∞ an1/n.
B1. m, n are relatively prime. We have three jugs which contain m, n and m+n liters. Initially the largest jug is full of water. Show that for any k in {1, 2, ... , m+n} we can get exactly k liters into one of the jugs.
B2. A parallelepiped has vertices A1, A2, ... , A8 and center O. Show that 4 ∑ |OAi|2 ≤ (∑|OAi|)2.
B3. The distinct reals x1, x2, ... , xn (n > 3) satisfy ∑ xi = 0, &sum xi2 = 1. Show that four of the numbers a, b, c, d must satisfy a + b + c + nabc ≤ ∑ xi3 ≤ a + b + d + nabd. Labels: Polish Mathematical Olympiad