39th Polish Mathematical Olympiad Problems 1988



39th Polish Mathematical Olympiad Problems 1988

A1.  The real numbers x1, x2, ... , xn belong to the interval (0,1) and satisfy x1 + x2 + ... + xn = m + r, where m is an integer and r ∈ [0,1). Show that x12 + x22 + ... + xn2 ≤ m + r2.


A2.  For a permutation P = (p1, p2, ... , pn) of (1, 2, ... , n) define X(P) as the number of j such that pi < pj for every i < j. What is the expected value of X(P) if each permutation is equally likely?

A3.  W is a polygon. W has a center of symmetry S such that if P belongs to W, then so does P', where S is the midpoint of PP'. Show that there is a parallelogram V containing W such that the midpoint of each side of V lies on the border of W.

B1.  d is a positive integer and f : [0,d] → R is a continuous function with f(0) = f(d). Show that there exists x ∈ [0,d-1] such that f(x) = f(x+1).

B2.  The sequence a1, a2, a3, ... is defined by a1 = a2 = a3 = 1, an+3 = an+2an+1 + an. Show that for any positive integer r we can find s such that as is a multiple of r.

B3.  Find the largest possible volume for a tetrahedron which lies inside a hemisphere of radius 1.


Fun Maths Games for Kids

 
Return to top of page Copyright © Math Learning - Yearbooks - School Books - School Reading Books - Learning Math for Kids - Kids Math Learning - Math Games for Kids - Math Books for Kids - Online Math learning - Maths Learning - Online Math Learning - Math learning software - Math Learn - Math Learning Disabilities - Math Playground - Math is Fun - Math Learning center - Math Online - 3 digit divisor worksheets - Math Olympiad - Math Games Olympiad 2010 www.mathlearning.org. All right reseved. | Powered by Kids Math Books