Indian National Mathematics Olympiad 2003 Problems



Indian National Mathematics Olympiad 2003 Problems

1.  ABC is acute-angled. P is an interior point. The line BP meets AC at E, and the line CP meets AB at F. AP meets EF at D. K is the foot of the perpendicular from D to BC. Show that KD bisects ∠EKF.


2.  Find all primes p, q and even n > 2 such that pn + pn-1 + ... + p + 1 = q2 + q + 1.

3.  Show that 8x4 - 16x3 + 16x2 - 8x + k = 0 has at least one real root for all real k. Find the sum of the non-real roots.

4.  Find all 7-digit numbers which use only the digits 5 and 7 and are divisible by 35.

5.  ABC has sides a, b, c. The triangle A'B'C' has sides a + b/2, b + c/2, c + a/2. Show that its area is at least (9/4) area ABC.

6.  Each lottery ticket has a 9-digit numbers, which uses only the digits 1, 2, 3. Each ticket is colored red, blue or green. If two tickets have numbers which differ in all nine places, then the tickets have different colors. Ticket 122222222 is red, and ticket 222222222 is green. What color is ticket 123123123?



Fun Maths Games for Kids

 
Return to top of page Copyright © Math Learning - Yearbooks - School Books - School Reading Books - Learning Math for Kids - Kids Math Learning - Math Games for Kids - Math Books for Kids - Online Math learning - Maths Learning - Online Math Learning - Math learning software - Math Learn - Math Learning Disabilities - Math Playground - Math is Fun - Math Learning center - Math Online - 3 digit divisor worksheets - Math Olympiad - Math Games Olympiad 2010 www.mathlearning.org. All right reseved. | Powered by Kids Math Books