25th Vietnamese Mathematical Olympiad 1987 Problems



25th Vietnamese Mathematical Olympiad 1987 problems


A1.  Let xn = (n+1)π/3974. Find the sum of all cos(± x1 ± x2 ± ... ± x1987).
A2.  The sequences a0, a1, a2, ... and b0, b1, b2, ... are defined as follows. a0 = 365, an+1 = an(an1986 + 1) + 1622, b0 = 16, bn+1 = bn(bn3 + 1) - 1952. Show that there is no number in both sequences.


A3.  There are n > 2 lines in the plane, no two parallel. The lines are not all concurrent. Show that there is a point on just two lines.

B1.  x1, x2, ... , xn are positive reals with sum X and n > 1. h ≤ k are two positive integers. H = 2h and K = 2k. Show that x1K/(X - x1)H-1 + x2K/(X - x2)H-1 + x3K/(X - x3)H-1 + ... + xnK/(X - xn)H-1 ≥ XK-H+1/( (n-1)2H-1nK-H). When does equality hold?

B2.  The function f(x) is defined and differentiable on the non-negative reals. It satisfies | f(x) | ≤ 5, f(x) f '(x) ≥ sin x for all x. Show that it tends to a limit as x tends to infinity.

B3.  Given 5 rays in space from the same point, show that we can always find two with an angle between them of at most 90o.



Fun Maths Games for Kids

 
Return to top of page Copyright © Math Learning - Yearbooks - School Books - School Reading Books - Learning Math for Kids - Kids Math Learning - Math Games for Kids - Math Books for Kids - Online Math learning - Maths Learning - Online Math Learning - Math learning software - Math Learn - Math Learning Disabilities - Math Playground - Math is Fun - Math Learning center - Math Online - 3 digit divisor worksheets - Math Olympiad - Math Games Olympiad 2010 www.mathlearning.org. All right reseved. | Powered by Kids Math Books