15th Asian Pacific Mathematics Olympiad 2003 Problems



15th Asian Pacific Mathematics Olympiad 2003 Problems

1.  The polynomial a8x8 +a7x7 + ... + a0 has a8 = 1, a7 = -4, a6 = 7 and all its roots positive and real. Find the possible values for a0.


2.  A unit square lies across two parallel lines a unit distance apart, so that two triangular areas of the square lie outside the lines. Show that the sum of the perimeters of these two triangles is independent of how the square is placed.
3.  k > 14 is an integer and p is the largest prime smaller than k. k is chosen so that p ≥ 3k/4. Prove that 2p does not divide (2p - k)!, but that n does divide (n - k)! for composite n > 2p.
4.  Show that (an + bn)1/n + (bn + cn)1/n + (cn + an)1/n < 1 + (21/n)/2, where n > 1 is an integer and a, b, c are the sides of a triangle with unit perimeter.
5.  Find the smallest positive integer k such that among any k people, either there are 2m who can be divided into m pairs of people who know each other, or there are 2n who can be divided into n pairs of people who do not know each other.

15th APMO 2003 Problem 1

The polynomial a8x8 +a7x7 + ... + a0 has a8 = 1, a7 = -4, a6 = 7 and all its roots positive and real. Find the possible values for a0.
Answer 1/28
Solution
Let the roots be xi. We have Sum xi2 = 42 - 2·7 = 2. By Cauchy we have (x1·1 + ... + x8·1) ≤ (x12 + ... + x82)1/2(12 + ... + 12)1/2 with equality iff all xi are equal. Hence all xi are equal. So they must all be 1/2.

15th APMO 2003 Problem 2

A unit square lies across two parallel lines a unit distance apart, so that two triangular areas of the square lie outside the lines. Show that the sum of the perimeters of these two triangles is independent of how the square is placed.
Solution



15th APMO 2003 Problem 3

k > 14 is an integer and p is the largest prime smaller than k. k is chosen so that p ≥ 3k/4. Prove that 2p does not divide (2p - k)!, but that n does divide (n - k)! for composite n > 2p.
Solution
Since k > p, we have p > 2p-k and hence p does not divide any of 1, 2, 3, ... , 2p-k. But p is prime, so it does not divide (2p - k)! So 2p does not either.
Now consider composite n > 2p. Note that k > 14, so p ≥ 13, so n > 26. Take q to be the largest prime divisor of n and put n = qr. We now have three cases.
(1) q > r ≥ 3. Then n > 2p ≥ 3k/2, so 2n/3 > k. Hence n-k > n-2n/3 = n/3 ≥ n/r = q > r. So q and r are distinct integers < n-k. Hence n = qr divides (n-k)!.
(2) r = 2. Then n = 2q > 2p. But p is the largest prime < k. Hence q ≥ k, so n-k ≥ n-q = q. Obviously q > 2 (since n > 26), so q and 2 are distinct integers < n-k. Hence n = 2q divides (n-k)! .
(3) The final case is n = q2. We show that 2q ≤ n-k. Suppose not. Then 2q ≥ n-k+1 ≥ (2p+1)-k+1 ≥ 3k/2 + 1 - k + 1 = k/2 + 2. So q ≥ k/4 + 1. Also since 2q ≥ n-k+1, we have k ≥ n-2q+1 = (q-1)2 ≥ k2/16. If k > 16, this is a contradiction. If k = 15 or 16, then p = 13 and k ≥ (q-1)2 gives q ≤ 5, so n = q2 ≤ 25. But n > 2p = 26. Contradiction. So we have established that 2q ≤ n-k. But that means that q and 2q are distinct integers ≤ n-k and so their product 2n divides (n-k)!.
Thanks to Gerhard Woeginger for this.

15th APMO 2003 Problem 4

Show that (an + bn)1/n + (bn + cn)1/n + (cn + an)1/n < 1 + (21/n)/2, where n > 1 is an integer and a, b, c are the sides of a triangle with unit perimeter.
Solution
We may take a ≥ b ≥ c. Since a + b + c = 1 and a < b+c, we have b ≤ a < 1/2. Hence (an + bn)1/n < 21/n/2 (*).
We have (b + c/2)n = bn + n/2 c bn-1 + other positive terms > bn + cn. Hence (bn + cn)1/n < b + c/2. Similarly, (cn + an)1/n < a + c/2. Adding we get (bn + cn)1/n + (cn + an)1/n < a+b+c = 1. Adding to (*) gives the required result.
 
 

Let the lines be L, L'. Let the square be ABA'B', with A, A' the two vertices not between L and L'. Let L meet AB at X and AB' at Y. Let L' meet A'B' at X' and A'B at Y'. So AXY and A'X'Y' are similar. Suppose angle AXY = x. If we move L towards A by a distance d perpendicular to itself, then AX is shortened by d cosec x. If L' remains a distance 1 from L, then A'X' is lengthened by d cosec x. The new triangle AXY is similar to the old. Suppose that perimeter AXY = k·AX, then perimeter AXY is increased by kd cosec x. Since AXY and A'X'Y' are similar, perimeter A'X'Y' is shortened by kd cosec x, so the sum of their perimeters is unchanged. It remains to show that the sum of the perimeters does not depend on the angle x.
Let us move L towards A until L' passes through A', at which point the perimeter of A'X'Y' is zero. Now if h is the height of AXY (from the base XY), then 1 + h = AA' sin(45o + x) = sin x + cos x. The perimeter of AXY is h/sin x + h/cos x + h/(sin x cos x) = h(sin x + cos x + 1)/(sin x cos x) = (sin x + cos x - 1)(sin x + cos x + 1)/(sin x cos x) = 2, which is independent of x.
[more...]


14th Asian Pacific Mathematics Olympiad 2002 Problems



14th Asian Pacific Mathematics Olympiad 2002 Problems

A1.  xi are non-negative integers. Prove that x1! x2! ... xn! ≥ ( [(x1 + ... + xn)/n] ! )n (where [y] denotes the largest integer not exceeding y). When do you have equality?


A2.  Find all pairs m, n of positive integers such that m2 - n divides m + n2 and n2 - m divides m2 + n.
A3.  ABC is an equilateral triangle. M is the midpoint of AC and N is the midpoint of AB. P lies on the segment MC, and Q lies on the segment NB. R is the orthocenter of ABP and S is the orthocenter of ACQ. The lines BP and CQ meet at T. Find all possible values for angle BCQ such that RST is equilateral.
A4.  The positive reals a, b, c satisfy 1/a + 1/b + 1/c = 1. Prove that √(a + bc) + √(b + ca) + √(c + ab) ≥ √(abc) + √a + √b + √c.
A5.  Find all real-valued functions f on the reals which have at most finitely many zeros and satisfy f(x4 + y) = x3f(x) + f(f(y)) for all x, y. 

14th APMO 2002 Problem 1

xi are non-negative integers. Prove that x1! x2! ... xn! ≥ ( [(x1 + ... + xn)/n] ! )n (where [y] denotes the largest integer not exceeding y). When do you have equality?
Solution
Answer: Equality iff all xi equal.
For given 2m the largest binomial coefficient is (2m)!/(m! m!) and for 2m+1 the largest binomial coefficient is (2m+1)!/( m! (m+1)!). Hence for fixed xi + xj the smallest value of xi! xj! is for xi and xj as nearly equal as possible.
If x1 + x2 + ... + xn = qn + r, where 0 < r < n, then we can reduce one or more xi to reduce the sum to qn. This will not affect the rhs of the inequality in the question, but will reduce the lhs. Equalising the xi will not increase the lhs (by the result just proved). So it is sufficient to prove the inequality for all xi equal. But in this case it is trivial since k! = k! . 

14th APMO 2002 Problem 2

Find all pairs m, n of positive integers such that m2 - n divides m + n2 and n2 - m divides m2 + n.
Solution
Assume n ≥ m.
(m+1)2 - m = (m+1) + m2. Clearly n2 increases faster than n, so n2 - m > n + m2 for n > m+1 and hence there are no solutions with n > m+1. It remains to consider the two cases n = m and n = m+1.
Suppose n = m. Then we require that n2 - n divides n2 + n. If n > 3, then n2 > 3n, so 2(n2 - n) > n2 + n. Obviously n2 - n < n2 + n, so if n > 3, then n2 - n cannot divide n2 + n. It is easy to check that the only solutions (with n = m) less than 3 are n = 2 and n = 3.
Finally suppose n = m+1. We require m2 - m - 1 divides m2 + 3m + 1. If m >= 6, then m(m - 5) > 3, so 2(m2 - m - 1) > m2 + 3m + 1. Obviously m2 - m - 1 < m2 + 3m + 1, so m2 - m - 1 cannot divide m2 + 3m + 1 for m >= 6. Checking the smaller values, we find the solutions less than 6 are m = 1 and m = 2.
Summarising, the only solutions are: (n, m) = (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2). 

14th APMO 2002 Problem 3

ABC is an equilateral triangle. M is the midpoint of AC and N is the midpoint of AB. P lies on the segment MC, and Q lies on the segment NB. R is the orthocenter of ABP and S is the orthocenter of ACQ. The lines BP and CQ meet at T. Find all possible values for angle BCQ such that RST is equilateral.
Answer 15o.
Solution
 
Suppose CP < BQ. Since R is the intersection of BM and the perpendicular from P to AB, and S is the intersection of CN and the perpendicular from Q to AC, we have MR > NS. Hence (treating BC as horizontal), R is below S. But T must be to the right of the midpoint of BC. Hence T is to the right of the perpendicular bisector of RS, so RST cannot be equilateral. Contradiction. Similarly if CP > BQ. So CP = BQ. 

Let L be the midpoint of BC. Put ∠CBP = x and ∠RAM = y. So RM = AM tan y, TL = BL tan x = AM tan x. But ∠APB = 60o + x, so y = 30o - x. So if x ≠ 15o, then TL ≠ RM. However, RST equilateral implies TL = RM, so x and hence also ∠BCQ = 15o.

14th APMO 2002 Problem 4

The positive reals a, b, c satisfy 1/a + 1/b + 1/c = 1. Prove that √(a + bc) + √(b + ca) + √(c + ab) ≥ √(abc) + √a + √b + √c.
Solution
Thanks to Suat Namli for this.
Multiplying by √(abc), we have √(abc) = √(ab/c) + √(bc/a) + √(ca/b). So it is sufficient to prove that √(c + ab) ≥ √c + √(ab/c).
Squaring, this is equivalent to c + ab ≥ c + ab/c + 2√(ab) or c + ab ≥ c + ab(1 - 1/a - 1/b) + 2√(ab) or a + b >= 2√(ab) or (√a - √b)2 ≥ 0.
[more...]


13th Asian Pacific Mathematics Olympiad 2001 Problems



13th Asian Pacific Mathematics Olympiad 2001 Problems
A1.  If n is a positive integer, let d be the number of digits in n (in base 10) and s be the sum of the digits. Let n(k) be the number formed by deleting the last k digits of n. Prove that n = s + 9 n(1) + 9 n(2) + ... + 9 n(d).


A2.  Find the largest n so that the number of integers less than or equal to n and divisible by 3 equals the number divisible by 5 or 7 (or both).
A3.  Two equal-sized regular n-gons intersect to form a 2n-gon C. Prove that the sum of the sides of C which form part of one n-gon equals half the perimeter of C.
A4.  Find all real polynomials p(x) such that x is rational iff p(x) is rational.
A5.  What is the largest n for which we can find n + 4 points in the plane, A, B, C, D, X1, ... , Xn, so that AB is not equal to CD, but for each i the two triangles ABXi and CDXi are congruent? 

Solutions

13th APMO 2001 Problem 1

If n is a positive integer, let d+1 be the number of digits in n (in base 10) and s be the sum of the digits. Let n(k) be the number formed by deleting the last k digits of n. Prove that n = s + 9 n(1) + 9 n(2) + ... + 9 n(d).
Solution
Let the digits of n be ad, ad-1, ... , a0, so that n = ad 10d + ... + a0. Then n(k) = ad 10d-k + ad-1 10d-k-1 + ... + ak. Obviously s = ad + ... + a0. Hence s + 9 n(1) + ... + 9 n(d) = ad(9.10d-1 + 9.10d-2 + ... + 9 + 1) + ad-1(9.10d-2 + ... + 9 + 1) + ... + ad-k(9.10d-k-1 + ... + 9 + 1) + a1(9 + 1) + a0 = ad 10d + ... + a0 = n. 

13th APMO 2001 Problem2


Find the largest n so that the number of integers less than or equal to n and divisible by 3 equals the number divisible by 5 or 7 (or both).
Solution
Answer: 65.
Let f(n) = [n/3] - [n/5] - [n/7] + [n/35]. We are looking for the largest n with f(n) = 0. Now [n/5] + [n/7} <= [n/5 + n/7] = [12n/35] = [n/3 + n/105]. So for [n/5] + [n/7] to exceed [n/3] we certainly require n/105 ≥ 1/3 or n ≥ 35. Hence f(n) ≥ 0 for n ≤ 35. But f(n+35) = [n/3 + 11 + 2/3] - [n/5 + 7] - [n/7 + 5] + [n/35 + 1] = [n/3 + 2/3] - [n/5] - [n/7] + [n/35] ≥ f(n) (*). Hence f(n) ≥ 0 for all n. But f(n+105) = [n/3 + 35] - [n/5 + 21] - [n/7 + 15] + [n/35 + 3] = f(n) + 2. Hence f(n) ≥ 2 for all n ≥ 105.
Referring back to (*) we see that f(n+35) > f(n), and hence f(n+35) > 0, unless n is a multiple of 3. But if n is a multiple of 3, then n + 35 is not and hence f(n+70) > f(n+35) > 0. So f(n) > 0 for all n ≥ 70.
f(70) = 1. So f(69) = 2 (we have lost 70, a multiple of 7). So f(68) = f(67) = f(66) = 1 (we have lost 69, a multiple of 3). Hence f(65) = 0 (we have lost 66, a multiple of 3). 


13th APMO 2001 Problem3

Two equal-sized regular n-gons intersect to form a 2n-gon C. Prove that the sum of the sides of C which form part of one n-gon equals half the perimeter of C.
Solution
Let one regular n-gon have vertices P1, P2, ... , Pn and the other have vertices Q1, Q2, ... , Qn. Each side of the 2n-gon forms a triangle with one of the Pi or Qi. Note that Pi and Qj must alternate as we go around the 2n-gon. For convenience assume that the order is P1, Q1, P2, Q2, ... , Pn, Qn. Let the length of the side which forms a triangle with Pi be pi, and the length of the side which forms a triangle with Qi be qi. Each of these triangles has one angle (180o - 360o/n). Adjacent triangles have one of their other angles equal (alternate angles), so all the triangles are similar. If the sides of the triangle vertex Pi have lengths ai, bi, pi, then the side PiPi+1 is bi + qi + ai+1, and ai/ai+1 = bi/bi+1 = pi/pi+1. Similarly, if the sides of the triangle vertex Qi have lengths ci, di, qi, then the side QiQi+1 is di + pi+1 + ci+1 and ci/ci+1 = di/di+1 = qi/qi+1. But ai/bi = di/ci (not ci/di), because the triangles alternate in orientation.
Put ai/pi = h, bi/pi = k. Note that ai + bi > pi, so h + k - 1 > 0. We have also ci/qi = k, di/qi = h. Adding the expressions for PiPi+1 we get perimeter Pi = ∑(bi + qi + ai+1) = k ∑ pi + ∑ qi + h ∑ pi. Similarly, perimeter Qi = (h + k) ∑ qi + ∑ pi. The two n-gons are equal, so (h + k - 1) ∑ pi = (h + k - 1) ∑ qi. Hence ∑ pi = ∑ qi, which is the required result.

13th APMO 2001 Problem4

Find all real polynomials p(x) such that x is rational iff p(x) is rational.
Solution
It is necessary for all the coefficients of x to be rational. This is an easy induction on the number of coefficients. For p(0) must be rational, hence ( p(x) - p(0) )/x must be rational for all rational x and so on.
Clearly this condition is also sufficient for polynomials of degree 0 or 1.
There are obviously no quadratics, for if p(x) = ax2 + bx + c, with a, b, c rational, then p(√2 - b/2a) = 2a - b2/4a + c, which is rational.
We prove that if there are also no higher degree polynomials. The idea is to show that there is a rational value k which must be taken for some real x, but which cannot be taken by any rational x.
Suppose p(x) has degree n > 1. Multiplying through by the lcm of the denominators of the coefficients, we get p(x) = (a xn + b xn-1 + ... + u x + v)/w, where a, b, ... , w are all integers. Put x = r/s, where r and s are coprime integers, then p(r/s) = (a rn + b rn-1s + ... + u r sn-1 + v sn)/( w sn). Let q be any prime which does not divide a or w. Consider first a > 0. p(x) must assume all sufficiently large positive values. So it must in particular take the value k = m + 1/q, where m is a sufficiently large integer. So k = (mq + 1)/q. The denominator is divisible by q, but not q2 and the numerator is not divisible by q. Suppose p(r/s) = k for some integers r, s. The denominator of p(r/s) is w sn. We know that w is not divisible by q, so q must divide s. But n > 1, so q2 divides w sn. The numerator of p(r/s) has the form a rn + h s. Neither a nor r is divisible by q, so the numerator is not divisible by q. Thus no cancellation is possible and we cannot have p(r/s) = k. Thus there must be some irrational x such that p(x) = k.
If a < 0, then the same argument works except that we take k = m + 1/q, where m is a sufficiently large negative integer.

13th APMO 2001 Problem 5

What is the largest n for which we can find n + 4 points in the plane, A, B, C, D, X1, ... , Xn, so that AB is not equal to CD, but for each i the two triangles ABXi and CDXi are congruent?
Answer 4
Solution
Many thanks to Allen Zhang for completing the proof
Assume AB = a, CD = b with a > b. If ABX and CDX are congruent, then either AX or BX = CD = b, so X lies either on the circle SA center A radius b, or on the circle SBcenter B radius b. Similarly, CX or DX = AB = a, so X lies either on the circle SC center C radius a, or on the circle SD center D radius a. Thus we have four pairs of circles, (SA, SC), (SA, SD), (SB, SC), (SB, SD) each with at most 2 points of intersection. X must be one of these 8 points.
However, we show that if two points of intersection of (SA, SC) are included, then no points of (SB, SD) can be included. The same applies to each pair of circles, so at most 4 points X are possible. Finally, we will give an example of n = 4, showing that the maximum of 4 is achieved.
So suppose (SA, SC) intersect at X and Y. We must have BX = DX and BY = DY, so X and Y both lie on the perpendicular bisector of BD. In other words, XY is the perpendicular bisector of BD, so D is the reflection of B in the line XY. There is no loss of generality in taking B (and D) to be on the same side of AC as X. Let A' be the reflection of A in the line XY. Since B lies on the circle center A radius a, D must lie on the circle center A' radius A. Thus the triangles A'XC and CDA' are congruent.
(Note that A and C can be on the same side of XY or opposite sides.) Hence D is the same height above AC as X, so DX is perpendicular to XY. Hence X is the midpoint of BD. Also ∠A'CD = ∠CA'X = 180o - ∠CAX, so AX and CD are parallel. They are also equal, so ACDX is a parallelogram and hence AC = DX = BD/2. In the second configuration above, both A and C are on the same side of XY as D, so the midpoint M of AC lies on the same side of XY as D. In the first configuration, since AX = b < a = CX, M lies to the right of XY.
Now suppose there is a solution for the configuration (SB, SD). Thus there is a point Z such that ABZ and ZDC are congruent. Then AZ = CZ, so Z lies on the perpendicular bisector of AC and hence on the same side of XY as D. But it is also a distance a from D and a distance b from B, and a > b, so it must lie on the same side of XY as B. Contradiction. So there are no solutions for the configuration (SB, SD), as required. That completes the proof that n ≤ 4.
For an example with n = 4, take a regular hexagon ACDBX3X2. Extend the side X2X3 to X1X4, with X1, X2, X3, X4 equally spaced in that order, so that X1AX2 and X3BX4 are equilateral. Then ABX1 and CX1D are congruent, ABX2 and DX2C are congruent, ABX3 and X3CD are congruent, and ABX4 and X4DC are congruent.

[more...]


12th Asian Pacific Mathematics Olympiad 2000 Problems



12th Asian Pacific Mathematics Olympiad 2000 Problems

A1.  Find a13/(1 - 3a1 + 3a12) + a23/(1 - 3a2 + 3a22) + ... + a1013/(1 - 3a101 + 3a1012), where an = n/101.
A2.  Find all permutations a1, a2, ... , a9 of 1, 2, ... , 9 such that a1 + a2 + a3 + a4 = a4 + a5 + a6 + a7 = a7 + a8 + a9 + a1 and a12 + a22 + a32 + a42 = a42 + a52 + a62 + a72 = a72 + a82 + a92 + a12.


A3.  ABC is a triangle. The angle bisector at A meets the side BC at X. The perpendicular to AX at X meets AB at Y. The perpendicular to AB at Y meets the ray AX at R. XY meets the median from A at S. Prove that RS is perpendicular to BC.
A4.  If m < n are positive integers prove that nn/(mm (n-m)n-m) > n!/( m! (n-m)! ) > nn/( mm(n+1) (n-m)n-m).
A5.  Given a permutation s0, s2, ... , sn of 0, 1, 2, .... , n, we may transform it if we can find i, j such that si = 0 and sj = si-1 + 1. The new permutation is obtained by transposing si and sj. For which n can we obtain (1, 2, ... , n, 0) by repeated transformations starting with (1, n, n-1, .. , 3, 2, 0)? 

Solutions
Find a13/(1 - 3a1 + 3a12) + a23/(1 - 3a2 + 3a22) + ... + a1013/(1 - 3a101 + 3a1012), where an = n/101.
Solution
Answer: 51.
The nth term is an3/(1 - 3an + 3an2) = an3/( (1 - an)3 + an3) = n3/( (101 - n)3 + n3). Hence the sum of the nth and (101-n)th terms is 1. Thus the sum from n = 1 to 100 is 50. The last term is 1, so the total sum is 51.

Find all permutations a1, a2, ... , a9 of 1, 2, ... , 9 such that a1 + a2 + a3 + a4 = a4 + a5 + a6 + a7 = a7 + a8 + a9 + a1 and a12 + a22 + a32 + a42 = a42 + a52 + a62 + a72 = a72 + a82 + a92 + a12.
Solution
We may start by assuming that a1 < a4 < a7 and that a2 < a3, a5 < a6, a8 < a9.
Note that 1 + ... + 9 = 45 and 12 + ... + 92 = 285. Adding the three square equations together we get (a12 + ... + a92) + a12 + a42 + a72 = 285 + a12 + a42 + a72. The total must be a multiple of 3. But 285 is a multiple of 3, so a12 + a42 + a72 must be a multiple of 3. Now 32, 62 and 92 are all congruent to 0 mod 3 and the other squares are all congruent to 1 mod 3. Hence either a1, a4 and a7 are all multiples of 3, or none of them are. Since 45 is also a multiple of three a similar argument with the three linear equations shows that a1 + a4 + a7 is a multiple of 3. So if none of a1, a4, a7 are multiples of 3, then they are all congruent to 1 mod 3 or all congruent to 2 mod 3. Thus we have three cases: (1) a1 = 3, a4 = 6, a7 = 9, (2) a1 = 1, a4 = 4, a7 = 7, and (3) a1 = 2, a4 = 5, a7 = 8.
In case (1), we have that each sum of squares equals 137. Hence a82 + a92 = 47. But 47 is not a sum of two squares, so this case gives no solutions.
In case (2), we have that each sum of squares is 117. Hence a52 + a62 = 52. But the only way of writing 52 as a sum of two squares is 42 + 62 and 4 is already taken by a4, so this case gives no solutions.
In case (3), we have that each sum of squares is 126 and each linear sum 20. We quickly find that the only solution is 2, 4, 9, 5, 1, 6, 8, 3, 7.
Obviously, this generates a large number of equivalent solutions. We can interchange a2 and a3, or a5 and a6, or a8 and a9. We can also permute a1, a4 and a7. So we get a total of 2 x 2 x 2 x 6 =48 solutions. 

ABC is a triangle. The angle bisector at A meets the side BC at X. The perpendicular to AX at X meets AB at Y. The perpendicular to AB at Y meets the ray AX at R. XY meets the median from A at S. Prove that RS is perpendicular to BC.
Solution
Let the line through C parallel to AX meet the ray BA at C'. Let the perpendicular from B meet the ray C'C at T and the ray AX at U. Let the line from C parallel to BT meet BA at V and let the perpendicular from V meet BT at W. So CVWT is a rectangle.
AU bisects ∠CAV and CV is perpendicular to AU, so U is the midpoint of WT. Hence the intersection N of AU and CW is the center of the rectangle and, in particular, the midpoint of CW. Let M be the midpoint of BC. Then since M, N are the midpoints of the sides CB and CW of the triangle CBW, MN = BW/2.
Since CC' is parallel to AX, ∠CC'A = ∠BAX = ∠CAX = ∠C'CA, so AC' = AC. Let A' be the midpoint of CC'. Then AU = C'T - C'A'. But N is the center of the rectangle CTWV, so NU = CT/2 and AN = AU - NU = C'T - C'A' - CT/2 = C'T/2. Hence MN/AN = BW/C'T. But MN is parallel to BW and XY, so SX/AX = MN/AN = BW/C'T.
Now AX is parallel to VW and XY is parallel to BW, so AXY and VWB are similar and AX/XY = VW/BW = CT/BW. Hence SX/XY = (SX/AX) (AX/XY) = CT/C'T.
YX is an altitude of the right-angled triangle AXR, so AXY and YXR are similar. Hence XY/XR = XA/XY. But AXY and C'TB are similar, so XA/XY = C'T/BT. Hence SX/XR = (SX/XY) (XY/XR) = (CT/C'T) (C'T/BT) = CT/BT. But angles CTB and SXR are both right angles, so SXR and CTB are similar. But XR is perpendicular to BT, so SR is perpendicular to BC. 

If m < n are positive integers prove that nn/(mm (n-m)n-m) > n!/( m! (n-m)! ) > nn/( mm(n+1) (n-m)n-m).
Solution
The key is to consider the binomial expansion (m + n-m)n. This is a sum of positive terms, one of which is nCm mm(n-m)n-m, where nCm is the binomial coefficient n!/( m! (n-m)! ). Hence nCm mm(n-m)n-m < nn, which is one of the required inequalities.
We will show that nCm mm(n-m)n-m is the largest term in the binomial expansion. It then follows that (n+1) nCm mm(n-m)n-m > nn, which is the other required inequality.
Comparing the rth term nCr mr(n-m)n-r with the r+1th term nCr+1 mr+1(n-m)n-r-1 we see that the rth term is strictly larger for r ≥ m and smaller for r < m. Hence the mth term is larger than the succeeding terms and also larger than the preceding terms.

Given a permutation s0, s2, ... , sn of 0, 1, 2, .... , n, we may transform it if we can find i, j such that si = 0 and sj = si-1 + 1. The new permutation is obtained by transposing si and sj. For which n can we obtain (1, 2, ... , n, 0) by repeated transformations starting with (1, n, n-1, .. , 3, 2, 0)?
Solution
Experimentation shows that we can do it for n=1 (already there), n = 2 (already there), 3, 7, 15, but not for n = 4, 5, 6, 8, 9, 10, 11, 12, 13, 14. So we conjecture that it is possible just for n = 2m - 1 and for n = 2.
Notice that there is at most one transformation possible. If n = 2m, then we find that after m-1 transformations we reach
1  n  0  n-2  n-1  n-4  n-3 ... 4  5  2  3
and we can go no further. So n even fails for n > 2.
If n = 15 we get successively:
1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 start
1 0 14 15 12 13 10 11 8 9 6 7 4 5 2 3 after 7 moves
1 2 3 0 12 13 14 15 8 9 10 11 4 5 6 7 after 8 more moves
1 2 3 4 5 6 7 0 8 9 10 11 12 13 14 15 after 8 more moves
1   2   3   4   5   6   7   8   9  10  11  12  13  14  15   0   after 8 more moves
This pattern is general. Suppose n = 2m - 1. Let P0 be the starting position and Pr be the position:
1   2   3 ... R-1   0,   n-R+1  n-R+2  n-R+3 ... n,   n-2R+1  n-2R+2 ... n-R, ... , R  R+1 ... 2R-1 
Here R denotes 2r and the commas highlight that, after the initial 1 2 ... R-1 0, we have increasing runs of R terms. If we start from Pr, then the 0 is transposed successively with R, 3R, 5R, ... , n-R+1, then with R+1, 3R+1, ... , n-R+2, and so on up to 2R-1, 4R-1, ... , n. But that gives Pr+1. It is also easy to check that P0 leads to P1 and that Pm is the required finishing position. Thus the case n = 2m - 1 works. Now suppose n is odd but not of the form 2m - 1. Then we can write n = (2a + 1)2b - 1 (just take 2b as the highest power of 2 dividing n + 1). We can now define P0, P1, ... , Pb as before. As before we will reach Pb:
1 2 ¼ B-1 0, 2aB 2aB+1¼ (2a+1)B-1, (2a-1)B ¼ 2aB-1, ¼ , 3B, 3B+1, ¼ 4B-1, 2B, 2B+1, ¼ , 3B-1, B, B+1, ¼ , 2B-1 
where B = 2b - 1. But then the 0 is transposed successively with B, 3B, 5B, ... , (2a-1)B, which puts it immediately to the right of (2a+1)B-1 = n, so no further transformations are possible and n = (2a+1)2b - 1 fails.
[more...]


11th Asian Pacific Mathematics Olympiad 1999 Problems



11th Asian Pacific Mathematics Olympiad 1999 Problems

A1.  Find the smallest positive integer n such that no arithmetic progression of 1999 reals contains just n integers.
A2.  The real numbers x1, x2, x3, ... satisfy xi+j ≤ xi + xj for all i, j. Prove that x1 + x2/2 + ... + xn/n ≥ xn.


A3.  Two circles touch the line AB at A and B and intersect each other at X and Y with X nearer to the line AB. The tangent to the circle AXY at X meets the circle BXY at W. The ray AX meets BW at Z. Show that BW and BX are tangents to the circle XYZ.
A4.  Find all pairs of integers m, n such that m2 + 4n and n2 + 4m are both squares.
A5.  A set of 2n+1 points in the plane has no three collinear and no four concyclic. A circle is said to divide the set if it passes through 3 of the points and has exactly n - 1 points inside it. Show that the number of circles which divide the set is even iff n is even.

Find the smallest positive integer n such that no arithmetic progression of 1999 reals contains just n integers.
Solution
Answer: 70.
Using a difference of 1/n , where n does not divide 1999, we can get a progression of 1999 terms with m = [1998/n] or m = [1998/n] - 1 integers. Thus {0, 1/n, 2/n, ... , 1998/n} has m+1 integers, and {1/n, 2/n, ... , 1999/n} has m integers. So we are ok until n gets so large that the gap between [1998/n] and [1998/(n+1)] is 3 or more. This could happen for 1998/n - 1998/(n+1) just over 2 or n > 31. So checking, we find [1998/31] = 64, [1998/30] = 66, [1998/29] = 68, [1998/28] = 71.
We can get 68 integers with {1/29, 2/29, ... , 1999/29} and 69 with {0, 1/29, 2/29, ... , 1998/29}. We can get 71 with {1/28, 2/28, ... , 1999/28}, but we cannot get 70. Note that a progression with irrational difference gives at most 1 integer. A progression with difference a/b, where a and b are coprime integers, gives the same number of integers as a progression with difference 1/b. So it does not help to widen the class of progressions we are looking at.

The real numbers x1, x2, x3, ... satisfy xi+j <= xi + xj for all i, j. Prove that x1 + x2/2 + ... + xn/n >= xn.
Solution
We use induction. Suppose the result is true for n. We have:
x1 >= x1
x1 + x2/2 >= x2
...
x1 + x2/2 + ... + xn/n >= xn
Also: x1 + 2x2/2 + ... + nxn/n = x1 + ... + xn
Adding: (n+1) x1 + (n+1)x2/2 + ... + (n+1)xn/n >= 2(x1 + ... + xn). But rhs = (x1 + xn) + (x2 + xn-1) + ... + (xn + x1) >= n xn+1. Hence result.

Two circles touch the line AB at A and B and intersect each other at X and Y with X nearer to the line AB. The tangent to the circle AXY at X meets the circle BXY at W. The ray AX meets BW at Z. Show that BW and BX are tangents to the circle XYZ.
Solution
Let angle ZXW = a and angle ZWX = b. XW is tangent to circle AXY at X, so angle AYX = a. AB is tangent to circle AXY at A, so angle BAX = a. AB is tangent to circle BXY at B, so angle ABX = b. Thus, considering triangle ABX, angle BXZ = a+b. Considering triangle ZXW, angle BZX = a+b.
BXYW is cyclic, so angle BYX = angle BWX = b. Hence angle AYB = angle AYX + angle XYB = a+b = angle AZB. So AYZB is cyclic. Hence angle BYZ = angle BAZ = a. So angle XYZ = angle XYB + angle BYZ = a+b. Hence angle BZX = angle XYZ, so BZ is tangent to circle XYZ at Z. Similarly angle BXY = angle XYZ, so BX is tangent to circle XYZ at X.

Find all pairs of integers m, n such that m2 + 4n and n2 +4m are both squares.
Solution
Answer: (m, n) or (n, m) = (0, a2), (-5, -6), (-4, -4), (a+1, -a) where a is a non-negative integer.
Clearly if one of m, n is zero, then the other must be a square and that is a solution.
If both are positive, then m2 + 4n must be (m + 2k)2 for some positive k, so n = km + k2 > m. But similarly m > n. Contradiction. So there are no solutions with m and n positive.
Suppose both are negative. Put m = -M, n = -N, so M and N are both positive. Assume M >= N. M2 - 4N is a square, so it must be (M - 2k)2 for some k, so N = Mk - k2. If M = N, then M(k-1) = k2, so k-1 divides k2 and hence k2 - (k-1)(k+1) = 1, so k = 2 and M = 4, giving the solution (m, n) = (-4, -4). So we may assume M > N and hence M > Mk - k2 > 0. But that implies that k = 1 or M-1 and hence N = M-1. [If M > Mk - k2, then (k-1)M < k2. Hence k = 1 or M < k+2. But Mk - k2 > 0, so M > k. Hence k = 1 or M = k+1.].
But N2 - 4M is also a square, so (M-1)2 - 4M = M2 - 6M + 1 is a square. But (M-3)2 > M2 - 6M + 1 and (M-4)2 < M2 - 6M + 1 for M >= 8, so the only possible solutions are M = 1, 2, ... , 7. Checking, we find that only M = 6 gives M2 - 6M + 1 a square. This gives the soluton (m, n) = (-6, -5). Obviously, there is also the solution (-5, -6).
Finally, consider the case of opposite signs. Suppose m = M > 0, n = -N < 0. Then N2 + 4M is a square, so by the argument above M > N. But M2 - 4N is a square and so the argument above gives N = M-1. Now we can easily check that (m, n) = (M, -(M-1) ) is a solution for any positive M.

A set of 2n+1 points in the plane has no three collinear and no four concyclic. A circle is said to divide the set if it passes through 3 of the points and has exactly n - 1 points inside it. Show that the number of circles which divide the set is even iff n is even.
Solution
Take two of the points, A and B, and consider the 2n-1 circles through A and B. We will show that the number of these circles which divide the set is odd. The result then follows almost immediately, because the number of pairs A, B is (2n+1)2n/2 = N, say. The total number of circles which divide the set is a sum of N odd numbers divided by 3 (because each such circle will be counted three times). If n is even, then N is even, so a sum of N odd numbers is even. If n is odd, then N is odd, so a sum of N odd numbers is odd. Dividing by 3 does not change the parity.
Their centers all lie on the perpendicular bisector of AB. Label them C1, C2, ... , C2n-1, where the center of Ci lies to the left of Cj on the bisector iff i < j. We call the two half-planes created by AB the left-hand half-plane L and the right-hand half-plane R correspondingly. Let the third point of the set on Ci be Xi. Suppose i < j. Then Ci contains all points of Cj that lie in L and Cj contains all points of Ci that lie R. So Xi lies inside Cj iff Xi lies in R and Xj lies inside Ci iff Xj lies in L
Now plot f(i), the number of points in the set that lie inside Ci, as a function of i. If Xi and Xi+1 are on opposite sides of AB, then f(i+1) = f(i). If they are both in L, then f(i+1) = f(i) - 1, and if they are both in R, then f(i+1) = f(i) + 1. Suppose m of the Xi lie in L and 2n-1-m lie in R. Now suppose f(i) = n-2, f(i+1) = f(i+2) = ... = f(i+j) = n-1, f(i+j+1) = n. Then j must be odd. For Xi and Xi+1 must lie in R. Then the points must alternate, so Xi+2 lies in L, Xi+3 lies in R etc. But Xi+j and Xi+j+1 must lie in R. Hence j must be odd. On the other hand, if f(i+j+1) = n-2, then j must be even. So the parity of the number of C1, C2, ... , Ci which divide the set only changes when f crosses the line n-1 from one side to the other. We now want to say that f starts on one side of the line n-1 and ends on the other, so the final parity must be odd. Suppose there are m points in L and hence 2n-1-m in R. Without loss of generality we may take m <= n-1. The first circle C1 contains all the points in L except X1 if it is in L. So f(1) = m or m-1. Similarly the last circle C2n-1 contains all the points in R except X2n-1 if it is in R. So f(2n-1) = 2n-1-m or 2n-2-m. Hence if m < n-1, then f(1) = m or m-1, so f(1) < n-1. But 2n-1-m >= n+1, so f(2n-1) > n-1. So in this case we are done.
However, there are complications if m = n-1. We have to consider 4 cases. Case (1): m = n-1, X1 lies in R, X2n-1 lies in L. Hence f(1) = n-1, f(2n-1) = n > n-1. So f starts on the line n-1. If it first leaves it downwards, then for the previous point i, Xi is in L and hence there were an even number of points up to i on the line. So the parity is the same as if f(1) was below the line. f(2n-1) is above the line, so we get an odd number of points on the line. If f first leaves the line upwards, then for the previous point i, Xi is in R and hence there were an odd number of points up to i on the line. So again the parity is the same as if f(1) was below the line.
Case (2): m = n-1, X1 lies in R, X2n-1 lies in R. Hence f(1) = f(2n-1) = n-1. As in case (1) the parity is the same as if f(1) was below the line. If the last point j with f(j) not on the line has f(j) < n-1, then (since X2n-1 lies in R) there are an odd number of points above j, so the parity is the same as if f(2n-1) was above the line. Similarly if f(j) > n-1, then there are an even number of points above j, so again the parity is the same as if f(2n-1) was above the line.
Case (3): m = n-1, X1 lies in L, X2n-1 lies in L. Hence f(1) = n-2, f(2n-1) = n. So case has already been covered.
Case (4): m=n-1, X1 lies in L, Xn-1 lies in R. So f(1) = n-2, f(2n-1) = n-1. As in case (2), the parity is the same as if f(2n-1) was above the line.
[more...]


10th Asian Pacific Mathematics Olympiad 1998 Problems



10th Asian Pacific Mathematics Olympiad 1998 Problems

A1.  S is the set of all possible n-tuples (X1, X2, ... , Xn) where each Xi is a subset of {1, 2, ... , 1998}. For each member k of S let f(k) be the number of elements in the union of its n elements. Find the sum of f(k) over all k in S.


A2.  Show that (36m + n)(m + 36n) is not a power of 2 for any positive integers m, n.
A3.  Prove that (1 + x/y)(1 + y/z)(1 + z/x) ≥ 2 + 2(x + y + z)/w for all positive reals x, y, z, where w is the cube root of xyz.
A4.  ABC is a triangle. AD is an altitude. X lies on the circle ABD and Y lies on the circle ACD. X, D and Y are collinear. M is the midpoint of XY and M' is the midpoint of BC. Prove that MM' is perpendicular to AM.
A5.  What is the largest integer divisible by all positive integers less than its cube root.

Solutions

S is the set of all possible n-tuples (X1, X2, ... , Xn) where each Xi is a subset of {1, 2, ... , 1998}. For each member k of S let f(k) be the number of elements in the union of its n elements. Find the sum of f(k) over all k in S.
Solution
Answer: 1998(21998n - 21997n).
Let s(n, m) be the sum where each Xi is a subset of {1, 2, ... , m}. There are 2m possible Xi and hence 2mn possible n-tuples. We have s(n, m) = 2ns(n, m-1) + (2n - 1)2n(m-1) (*). For given any n-tuple {X1, ... , Xn} of subsets of {1, 2, ... , m-1} we can choose to add m or not (2 choices) to each Xi. So we derive 2n n-tuples of subsets of {1, 2, ... , m}. All but 1 of these have f(k) incremented by 1. The first term in (*) gives the sum for m-1 over the increased number of terms and the second term gives the increments to the f(k) due to the additional element.
Evidently s(n, 1) = 2n - 1. It is now an easy induction to show that s(n, m) = m(2nm - 2n(m-1)).
Putting m = 1998 we get that the required sum is 1998(21998n - 21997n). 

Show that (36m + n)(m + 36n) is not a power of 2 for any positive integers m, n.
Solution
Assume there is a solution. Take m ≤ n and the smallest possible m. Now (36m + n) and (m + 36n) must each be powers of 2. Hence 4 divides n and 4 divides m. So m/2 and n/2 is a smaller solution with m/2 < m. Contradiction.

Prove that (1 + x/y)(1 + y/z)(1 + z/x) ≥ 2 + 2(x + y + z)/w for all positive reals x, y, z, where w is the cube root of xyz.
Solution
(1 + x/y)(1 + y/z)(1 + z/x) = 1 + x/y + y/x + y/z + z/y + z/x + x/z = (x + y + z)(1/x + 1/y + 1/z) - 1 ≥ 3(x + y + z)/w - 1, by the arithmetic geometric mean inequality,
= 2(x + y + z)/w + (x + y + z)/w - 1 ≥ 2(x + y + z) + 3 - 1, by the arithmetic geometric mean inequality.

ABC is a triangle. AD is an altitude. X lies on the circle ABD and Y lies on the circle ACD. X, D and Y are collinear. M is the midpoint of XY and M' is the midpoint of BC. Prove that MM' is perpendicular to AM
Solution
Take P, Q so that PADB, AQCD are rectangles. Let N be the midpoint of PQ. Then PD is a diameter of the circumcircle of ABC, so PX is perpendicular to XY. Similarly, QY is perpendicular to XY. N is the midpoint of PQ and M' the midpoint of XY, so NM is parallel to PX and hence perpendicular to XY. NADM' is a rectangle, so ND is a diameter of its circumcircle and M must lie on the circumcircle. But AM' is also a diameter, so ∠AMM' = 90o.
Thanks to Michael Lipnowski for the above. My original solution is below.
Let P be the circumcenter of ABD and Q the circumcenter of ADC. Let R be the midpoint of AM'. P and Q both lie on the perpendicular bisector of AD, which is parallel to BC and hence also passes through R. We show first that R is the midpoint of PQ.
Let the feet of the perpendiculars from P, Q, R to BC to P', Q', R' respectively. It is sufficient to show that . BP' = BD/2. BR' = BM' + M'R' = (BD + DC)/2 + M'D/2 = (BD + DC)/2 + ( (BD + DC)/2 - DC)/2 = 3BD/4 + DC/4, so P'R' = (BD + DC)/4. Q'C = DC/2, so BQ' = BD + DC/2 and P'Q' = (BD + DC)/2 = 2P'R'.
Now the circumcircle centre P meets XY in X and D, and the circumcircle centre Q meets XY in D and Y. Without loss of generality we may take XD >= DY. Put XD = 4x, DY = 4y. The circle center R through A, M' and D meets XY in a second point, say M''. Let the feet of the perpendiculars from P, Q, R to XY be P'', Q'', R'' respectively. So on XY we have, in order, X, P'', M'', R'', D, Q'', Y. Since R is the midpoint of PQ, R'' is the midpoint of P''Q''. Now P'' is the midpoint of XD and Q'' is the midpoint of DY, so P''Q'' = XY/2 = 2(x+y), so R''Q'' = x+y. But DQ'' = 2y, so R''D = x-y. R'' is the midpoint of M''D, so M''D = 2(x-y) and hence M''Y = M''D + DY = 2(x-y) + 4y = 2(x+y) = XY/2. So M'' is just M the midpoint of XY. Now AM' is a diameter of the circle center R, so AM is perpendicular to MM'. 

What is the largest integer divisible by all positive integers less than its cube root.
Solution
Answer: 420.
Let N be a positive integer satisfying the condition and let n be the largest integer not exceeding its cube root. If n = 7, then 3·4·5·7 = 420 must divide N. But N cannot exceed 83 - 1 = 511, so the largest such N is 420.
If n ≥ 8, then 3·8·5·7 = 840 divides N, so N > 729 = 93. Hence 9 divides N, and hence 3·840 = 2520 divides N. But we show that no N > 2000 can satisfy the condition.
Note that 2(x - 1)3 > x3 for any x > 4. Hence [x]3 > x3/2 for x > 4. So certainly if N > 2000, we have n3 > N/2. Now let pk be the highest power of k which does not exceed n. Then pk > n/k. Hence p2p3p5 > n3/30 > N/60. But since N > 2000, we have 7 < 11 < n and hence p2, p3, p5, 7, 11 are all ≤ n. But 77 p2p3p5 > N, so N cannot satisfy the condition.
[more...]


9th Asian Pacific Mathematics Olympiad 1997 Problems



9th Asian Pacific Mathematics Olympiad 1997 Problems

A1.  Let Tn = 1 + 2 + ... + n = n(n+1)/2. Let Sn= 1/T1 + 1/T2 + ... + 1/Tn. Prove that 1/S1 + 1/S2 + ... + 1/S1996 > 1001.


A2.  Find an n in the range 100, 101, ... , 1997 such that n divides 2n + 2.
A3.  ABC is a triangle. The bisector of A meets the segment BC at X and the circumcircle at Y. Let rA = AX/AY. Define rB and rC similarly. Prove that rA/sin2A + rB/sin2B + rC/sin2C ≥ 3 with equality iff the triangle is equilateral.
A4.  P1 and P3 are fixed points. P2 lies on the line perpendicular to P1P3 through P3. The sequence P4, P5, P6, ... is defined inductively as follows: Pn+1 is the foot of the perpendicular from Pn to Pn-1Pn-2. Show that the sequence converges to a point P (whose position depends on P2). What is the locus of P as P2 varies?
A5.  n people are seated in a circle. A total of nk coins are distributed amongst the people, but not necessarily equally. A move is the transfer of a single coin between two adjacent people. Find an algorithm for making the minimum number of moves which result in everyone ending up with the same number of coins?

Let Tn = 1 + 2 + ... + n = n(n+1)/2. Let Sn= 1/T1 + 1/T2 + ... + 1/Tn. Prove that 1/S1 + 1/S2 + ... + 1/S1996 > 1001.
Solution
1/Tm = 2(1/m - 1/(m+1) ). Hence Sn/2 = 1 - 1/(n+1). So 1/Sn = (1 + 1/n)/2. Hence 1/S1 + 1/S2 + ... + 1/Sn = 1996/2 + (1+ 1/2 + 1/3 + ... + 1/1996)/2.
Now 1 + 1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + ... + 1/16) + (1/17 + ... + 1/32) + (1/33 + ... + 1/64) + (1/65 + ... + 1/128) + (1/129 + ... + 1/256) + (1/257 + ... + 1/512) + (1/513 + ... + 1/1024) > 1 + 1/2 + 1/2 + ... + 1/2 = 6. So 1/S1 + 1/S2 + ... + 1/Sn = 1996/2 + 6/2 = 998 + 3 = 1001. 

Find an n in the range 100, 101, ... , 1997 such that n divides 2n + 2.
Solution
Answer: the only such number is 946.
We have 2p-1 = 1 mod p for any prime p, so if we can find h in {1, 2, ... , p-2} for which 2h = -2 mod p, then 2k= -2 mod p for any h = k mod p. Thus we find that 2k = -2 mod 5 for k = 3 mod 4, and 2k = -2 mod 11 for k = 6 mod 10. So we might then hope that 5·11 = 3 mod 4 and = 6 mod 10. Unfortunately, it does not! But we try searching for more examples.
The simplest would be to look at pq. Suppose first that p and q are both odd, so that pq is odd. If k = h mod p-1, then we need h to be odd (otherwise pq would have to be even). So the first step is to get a list of primes p with 2h = -2 mod p for some odd h < p. We always have 2p-1 = 1 mod p, so we sometimes have 2(p-1)/2 = -1 mod p and hence 2(p+1)/2 = -2 mod p. If (p+1)/2 is to be odd then p =1 mod 4. So searching such primes we find 3 mod 5, 7 mod 13, 15 mod 29, 19 mod 37, 27 mod 53, 31 mod 61. We require pq to lie in the range 100-1997, so we check 5·29 (not = 3 mod 4), 5·37 (not = 3 mod 4), 5·53 (not = 3 mod 4), 5·61 (not = 3 mod 4), 13·29 (not = 7 mod 12), 13·37 (not = 7 mod 12), 13.53 (not = 7 mod 12), 13·61 (not = 7 mod 12), 29·37 (not = 15 mod 28), 29·53 (not = 15 mod 28), 29·61 (not = 15 mod 28), 37·53 (not = 19 mod 36). So that does not advance matters much!
2p will not work (at least with h = (p+1)/2) because we cannot have 2p = (p+1)/2 mod p-1. So we try looking at 2pq. This requires that p and q = 3 mod 4. So searching for suitable p we find 6 mod 11, 10 mod 19, 22 mod 43, 30 mod 59, 34 mod 67, 42 mod 83. So we look at 2·11·43 = 946, which works.
Proving that it is unique is harder. The easiest way is to use a computer to search (approx 5 min to write a Maple program or similar and a few seconds to run it). 

ABC is a triangle. The bisector of A meets the segment BC at X and the circumcircle at Y. Let rA = AX/AY. Define rB and rC similarly. Prove that rA/sin2A + rB/sin2B + rC/sin2C >= 3 with equality iff the triangle is equilateral.
Solution
AX/AB = sin B/sin AXB = sin B/sin(180 - B - A/2) =sin B/sin(B + A/2). Similarly, AB/AY = sin AYB/sin ABY = sin C/sin(B + CBY) = sin C/sin(B + A/2). So AX/AY = sin B sin C/sin2(B + A/2). Hence rA/sin2A = sA/sin2(B + A/2), where sA = sin B sin C/sin2A. Similarly for rB and rC. Now sAsBsC = 1, so the arithmetic/geometric mean result gives sA + sB + sC ≥ 3. But 1/sin k ≥ 1 for any k, so rA/sin2A + rB/sin2B + rC/sin2C ≥ 3.
A necessary condition for equality is that sin2(B + A/2) = sin2(B + A/2) = sin2(B + A/2) = 1 and hence A = B = C. But it is easily checked that this is also sufficient.

P1 and P3 are fixed points. P2 lies on the line perpendicular to P1P3 through P3. The sequence P4, P5, P6, ... is defined inductively as follows: Pn+1 is the foot of the perpendicular from Pn to Pn-1Pn-2. Show that the sequence converges to a point P (whose position depends on P2). What is the locus of P as P2 varies?
Solution
PnPn+1Pn+2 lies inside Pn-1PnPn+1. So we have sequence of nested triangles whose size shrinks to zero. Each triangle is a closed set, so there is just one point P in the intersection of all the triangles and it is clear that the sequence Pn converges to it.
Obviously all the triangles PnPn+1Pn+2 are similar (but not necessarily with the vertices in that order). So P must lie in the same position relative to each triangle and we must be able to obtain one triangle from another by rotation and expansion about P. In particular, P5P4P6 is similar (with the vertices in that order) to P1P2P3, and P4P5 is parallel to P1P2, so the rotation to get one from the other must be through π and P must lie on P1P5. Similarly P3P4P5 must be obtained from P1P2P3 by rotation about P through π/2 and expansion. But this takes P1P5 into a perpendicular line through P3. Hence P1P is perpendicular to P3P. Hence P lies on the circle diameter P1P3.
However, not all points on this circle are points of the locus. P3P5 = P3P4 cos P1 = P3P1 sin P1 cos P2 = 1/2 P3P1 sin 2P1, so we can obtain all values of P3P5 up to P1P3/2. [Of course, P2, and hence P5, can be on either side of P3.]. Thus the locus is an arc XP3Y of the circle with XP3 = YP3 and ∠XP1Y = 2 tan-11/2. If O is the midpoint of P1P3, then O is the center of the circle and ∠XOY = 4 tan-11/2 (about 106o).

n people are seated in a circle. A total of nk coins are distributed amongst the people, but not necessarily equally. A move is the transfer of a single coin between two adjacent people. Find an algorithm for making the minimum number of moves which result in everyone ending up with the same number of coins?
Solution
Label the people from 1 to n, with person i next to person i+1, and person n next to person 1. Let person i initially hold ci coins. Let di = ci - k.
It is not obvious how many moves are needed. Clearly at least 1/2 ∑ |di| are needed. But one may need more. For example, suppose the starting values of di are 0, 1, 0, -1, 0. Then one needs at least 2 moves, not 1.
Obviously ∑ di = 0, so not all di can be negative. Relabel if necessary so that d1 ≥= 0. Now consider X = |d1| + |d1 + d2| + |d1 + d2 + d3| + ... + |d1 + d2 + ... + dn-1|. Note first that X is zero iff all di are zero. Any move between i and i+1, except one between n and 1, changes X by 1, because only the term |d1 + d2 + ... + di| is affected. Thus if we do not make any moves between n and 1, then we need at least X moves to reach the desired final position (with all di zero).
Assume X > 1. We show how to find a move which reduces X by 1. This requires a little care to avoid specifying a move which might require a person with no coins to transfer one. We are assuming that d1 ≥ 0. Take the first i for which di+1 < 0. There must be such an i, otherwise all di would be non-negative, but they sum to 0, so they would all have to be zero, contradicting X > 0. If d1 + ... + di > 0, then we take the move to be a transfer from i to i+1. This will reduce |d1 + ... + di| by 1 and leave the other terms in X unchanged, so it will reduce X by 1. If d1 + ... + di is not strictly positive, then by the minimality of i we must have d1 = d2 = ... = di = 0. We know that di+1 < 0. Now find the first j > i+1 such that dj ≥ 0. There must be such a j, otherwise we would have ∑ dm < 0. We have d1 + ... + dj-1 < 0, so a transfer from j to j-1 will reduce |d1 + ... + dj-1| and hence reduce X. Finally note that the move we have chosen leaves d1 ≥ 0. Thus we can repeat the process and reduce X to zero in X moves.
We have proved that this procedure minimises the number of moves if we accept the restriction that we do not make any transfers between 1 and n. Thus the full algorithm is: calculate the effect of the transfers from 1 to n and from n to 1 on X. If either of these transfers reduces X by more than 1, then take the move with the larger reduction; otherwise, find a move as above which reduces X by 1; repeat.
[more...]


8th Asian Pacific Mathematics Olympiad 1996 Problems



8th Asian Pacific Mathematics Olympiad 1996 Problems

A1.  ABCD is a fixed rhombus. P lies on AB and Q on BC, so that PQ is perpendicular to BD. Similarly P' lies on AD and Q' on CD, so that P'Q' is perpendicular to BD. The distance between PQ and P'Q' is more than BD/2. Show that the perimeter of the hexagon APQCQ'P' depends only on the distance between PQ and P'Q'.


A2.  Prove that (n+1)mnm ≥ (n+m)!/(n-m)! ≥ 2mm! for all positive integers n, m with n ≥ m.
A3.  Given four concyclic points. For each subset of three points take the incenter. Show that the four incenters from a rectangle.
A4.  For which n in the range 1 to 1996 is it possible to divide n married couples into exactly 17 single sex groups, so that the size of any two groups differs by at most one.
A5.  A triangle has side lengths a, b, c. Prove that √(a + b - c) + √(b + c - a) + √(c + a - b) ≤ √a + √b + √c. When do you have equality?

ABCD is a fixed rhombus. P lies on AB and Q on BC, so that PQ is perpendicular to BD. Similarly P' lies on AD and Q' on CD, so that P'Q' is perpendicular to BD. The distance between PQ and P'Q' is more than BD/2. Show that the perimeter of the hexagon APQCQ'P' depends only on the distance between PQ and P'Q'.
Solution
BPQ and DQ'P' are similar. Let PQ meet BD at X and P'Q' meet BD at Y. XY is fixed, so BX + DY is fixed. Hence also, BP + DQ' and BQ + DP' and PQ + P'Q' are fixed. So PQ + P'Q' - BP - BQ - DP' - DQ' is fixed, so PQ + P'Q' + (AB - BP) + (BC - BQ) + (CD - DP') + (DA - DQ') is fixed, and that is the perimeter of the hexagon.

Prove that (n+1)mnm ≥ (n+m)!/(n-m)! ≥ 2mm! for all positive integers n, m with n ≥ m.
Solution
For any integer k ≥ 1, we have (n + k)(n - k + 1) = n2 + n - k2 + k ≤ n(n + 1). Taking the product from k = 1 to m we get (n + m)!/(n - m)! ≤ (n + 1)mnm.
For k = 1, 2, ... , m, we have n ≥ k and hence n + k ≥ 2k. Taking the product from k = 1 to m, we get (n + m)!/(n - m)! ≥ 2mm! .

Given four concyclic points. For each subset of three points take the incenter. Show that the four incenters from a rectangle.
Solution
Take the points as A, B, C, D in that order. Let I be the incenter of ABC. The ray CI bisects the angle ACB, so it passes through M, the midpoint of the arc AB. Now ∠MBI = ∠MBA + ∠IBA = ∠MCA + ∠IBA = (∠ACB + ∠ABC)/2 = 90o - (∠CAB) /2 = 90o - ∠CMB/2 = 90o - ∠IMB/2. So the bisector of ∠IMB is perpendicular to IB. Hence MB = MI. Let J be the incenter of ABD. Then similarly MA = MJ. But MA = MB, so the four points A, B, I, J are concyclic (they lie on the circle center M). Hence ∠BIJ = 180o - ∠BAJ = 180o - ∠BAD/2.
Similarly, if K is the incenter of ADC, then ∠BJK = 180o - ∠BDC/2. Hence ∠IJK = 360o - ∠BIJ - ∠BJK = (180o - ∠BIJ) + (180o - ∠BJK) = (∠BAD + ∠BDC)/2 = 90o. Similarly, the other angles of the incenter quadrilateral are 90o, so it is a rectangle.

For which n in the range 1 to 1996 is it possible to divide n married couples into exactly 17 single sex groups, so that the size of any two groups differs by at most one.
Solution
Answer: 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 36, 37, 38, 39, 40, 45, 46, 47, 48, 54, 55, 56, 63, 64, 72.
If n = 17k, then the group size must be 2k. Hence no arrangement is possible, because one sex has at most 8 groups and 8.2k < n.
If 2n = 17k+h with 0 < h < 17, then the group size must be k or k+1. One sex has at most 8 groups, so 8(k+1) ≥ n. Hence 16k + 16 ≥ 17k + h, so 16 - h ≥ k (*). We also require that 9k ≤ n. Hence 18k < 2n = 17k + h, so k ≤ h (**). With (*) this implies that k ≤ 8. So n ≤ 75.
Each group has at least one person, so we certainly require n ≥ 9 and hence k ≥ 1. It is now easiest to enumerate. For k = 1, we can have h = 1, 3, ... 15, giving n = 9-16. For k = 2, we can have h = 2, 4, ... 14, giving n = 18-24. For k = 3, we can have h = 3, 5, ... 13, giving n = 27-32. For k = 4, we can have h = 4, 6, ... 12, giving n = 36-40. For k = 5 we can have h = 5, 7, 9, 11, giving n = 45-48. For k = 6, we can have h = 6, 8, 10, giving n = 54, 55, 56. For k = 7, we can have h = 7, 9, giving n = 63, 64. For k = 8, we can have h = 8, giving n = 72.

A triangle has side lengths a, b, c. Prove that √(a + b - c) + √(b + c - a) + √(c + a - b) ≤ √a + √b + √c. When do you have equality?
Solution
Let A2 = b + c - a, B2 = c + a - b, C2 = a + b - c. Then A2 + B2 = 2c. Also A = B iff a = b. We have (A - B)2 ≥ 0, with equality iff A = B. Hence A2 + B2 ≥ 2AB and so 2(A2 + B2) ≥ (A + B)2 or 4c ≥ (A + B)2 or 2√c ≥ A + B, with equality iff A = B. Adding the two similar relations we get the desired inequality, with equality iff the triangle is equilateral.

[more...]


7th Asian Pacific Mathematics Olympiad 1995 Problems



7th Asian Pacific Mathematics Olympiad 1995 Problems

A1.  Find all real sequences x1, x2, ... , x1995 which satisfy 2√(xn - n + 1) ≥ xn+1 - n + 1 for n = 1, 2, ... , 1994, and 2√(x1995 - 1994) ≥ x1 + 1.


A2.  Find the smallest n such that any sequence a1, a2, ... , an whose values are relatively prime square-free integers between 2 and 1995 must contain a prime. [An integer is square-free if it is not divisible by any square except 1.]
A3.  ABCD is a fixed cyclic quadrilateral with AB not parallel to CD. Find the locus of points P for which we can find circles through AB and CD touching at P.
A4.  Take a fixed point P inside a fixed circle. Take a pair of perpendicular chords AC, BD through P. Take Q to be one of the four points such that AQBP, BQCP, CQDP or DQAP is a rectangle. Find the locus of all possible Q for all possible such chords.
A5.  f is a function from the integers to {1, 2, 3, ... , n} such that f(A) and f(B) are unequal whenever A and B differ by 5, 7 or 12. What is the smallest possible n? 

Solution

A1. Find all real sequences x1, x2, ... , x1995 which satisfy 2√(xn - n + 1) ≥ xn+1 - n + 1 for n = 1, 2, ... , 1994, and 2√(x1995 - 1994) ≥ x1 + 1.
Solution
Answer: the only such sequence is 1, 2, 3, ... , 1995.
Put x1995 = 1995 + k. We show by induction (moving downwards from 1995) that xn ≥ n + k. For suppose xn+1 ≥ n + k + 1, then 4(xn - n + 1) ≥ (xn+1- n + 1)2 ≥ (k+2)2 ≥ 4k + 4, so xn ≥ n + k. So the result is true for all n ≥ 1. In particular, x1 ≥ 1 + k. Hence 4(x1995 - 1994) = 4(1 + k) ≥ (2 + k)2 = 4 + 4k + k2, so k2 ≤ 0, so k = 0.
Hence also xn ≥ n for n = 1, 2, ... , 1994. But now if xn = n + k, with k > 0, for some n < 1995, then the same argument shows that x1 ≥ 1 + k and hence 4 = 4(x1995 - 1994) ≥ (x1 + 1)2 ≥ (2 + k)2 = 4 + 4k + k2 > 4. Contradiction. Hence xn = n for all n ≤ 1995.

Find the smallest n such that any sequence a1, a2, ... , an whose values are relatively prime square-free integers between 2 and 1995 must contain a prime. [An integer is square-free if it is not divisible by any square except 1.]
Solution
Answer: n = 14.
We can exhibit a sequence with 13 terms which does not contain a prime: 2·101 = 202, 3·97 = 291, 5·89 = 445, 7·83 = 581, 11·79 = 869, 13·73 = 949, 17·71 = 1207, 19·67 = 1273, 23·61 = 1403, 29·59 = 1711, 31·53 = 1643, 37·47 = 1739, 41·43 = 1763. So certainly n ≥ 14.
If there is a sequence with n ≥ 14 not containing any primes, then since there are only 13 primes not exceeding 41, at least one member of the sequence must have at least two prime factors exceeding 41. Hence it must be at least 43·47 = 2021 which exceeds 1995. So n =14 is impossible.

ABCD is a fixed cyclic quadrilateral with AB not parallel to CD. Find the locus of points P for which we can find circles through AB and CD touching at P.
Solution
Answer: Let the lines AB and CD meet at X. Let R be the length of a tangent from X to the circle ABCD. The locus is the circle center X radius R. [Strictly you must exclude four points unless you allow the degenerate straight line circles.]
Let X be the intersection of the lines AB and CD. Let R be the length of a tangent from X to the circle ABCD. Let C0 be the circle center X radius R. Take any point P on C0. Then considering the original circle ABCD, we have that R2 = XA·XB = XC·XD, and hence XP2 = XA·XB = XC·XD.
If C1 is the circle through C, D and P, then XC.XD = XP2, so XP is tangent to the circle C1. Similarly, the circle C2 through A, B and P is tangent to XP. Hence C1 and C2 are tangent to each other at P. Note that if P is one of the 4 points on AB or CD and C0, then this construction does not work unless we allow the degenerate straight line circles AB and CD.
So we have established that all (or all but 4) points of C0 lie on the locus. But for any given circle through C, D, there are only two circles through A, B which touch it (this is clear if you consider how the circle through A, B changes as its center moves along the perpendicular bisector of AB), so there are at most 2 points on the locus lying on a given circle through C, D. But these are just the two points of intersection of the circle with C0. So there are no points on the locus not on C0

Take a fixed point P inside a fixed circle. Take a pair of perpendicular chords AC, BD through P. Take Q to be one of the four points such that ASCQ, ASDQ, BSCQ or BSDQ is a rectangle. Find the locus of all possible Q for all possible such chords.
Solution
Let O be the center of the fixed circle and let X be the center of the rectangle ASCQ. By the cosine rule we have OQ2 = OX2 + XQ2 - 2·OX·XQ cos θ and OP2 = OX2 + XP2 - 2·OX·XP cos(θ+π), where θ is the angle OXQ. But cos(θ+π) = -cos θ, so OQ2 + OP2= 2OX2 + 2XQ2. But since X is the center of the rectangle XQ = XC and since X is the midpoint of AC, OX is perpendicular to AC and hence XO2 + XC2 = OC2. So OQ2 = 2OC2 - OP2. But this quantity is fixed, so Q must lie on the circle center O radius √(2R2 - OP2), where R is the radius of the circle.
Conversely, it is easy to see that all points on this circle can be reached. For given a point Q on the circle radius √(2R2 - OP2) let X be the midpoint of PQ. Then take the chord AC to have X as its midpoint.

f is a function from the integers to {1, 2, 3, ... , n} such that f(A) and f(B) are unequal whenever A and B differ by 5, 7 or 12. What is the smallest possible n?
Solution
Answer: n = 4.
Each pair of 0, 5, 12 differ by 5, 7 or 12, so f(0), f(5), f(12) must all be different, so n ≥ 3.
We can exhibit an f with n = 4. Define f(m) = 1 for m = 1, 3, 5, 7, 9, 11 (mod 24), f(m) = 2 for m = 2, 4, 6, 8, 10, 12 (mod 24), f(m) = 3 for m = 13, 15, 17, 19, 21, 23 (mod 24), f(m) = 4 for m = 14, 16, 18, 20, 22, 0 (mod 24).

[more...]


Fun Maths Games for Kids

 
Return to top of page Copyright © Math Learning - Yearbooks - School Books - School Reading Books - Learning Math for Kids - Kids Math Learning - Math Games for Kids - Math Books for Kids - Online Math learning - Maths Learning - Online Math Learning - Math learning software - Math Learn - Math Learning Disabilities - Math Playground - Math is Fun - Math Learning center - Math Online - 3 digit divisor worksheets - Math Olympiad - Math Games Olympiad 2010 www.mathlearning.org. All right reseved. | Powered by Kids Math Books